

National Grid New England Energy Storage Schedules

Michael Porcaro, PE Director, DG Ombudsperson New England

February 24, 2022 national grid

New England

Top States for Solar per Sq-Mi

Rank	State	
1	Rhode Island	
2	New Jersey	
3	Massachusetts	
4	Connecticut	
5	California	

Connections		
CY22		CY21
State	Capacity (MW)	Capacity (MW)
MA	231.38	241.82
RI	73.18	105.42
Total	304.56	347.23

Total Solar Installations between 2010 and Q2-2020

Residential

Rank	Utlity	MWdc	
1	PGE	2,530	
2	SCE	1,861	
3	SDGE	1,028	
4	APS	869	
5	PSEG	750	
6	Duke	500	
7	National Grid	482	
8	Southern Nevada	380	
9	Xcel Energy	372	
10	Eversource	358	

	Non-F	<u>Resid</u>	en	<u>tial</u>
Total	Non-re	siden	tial	Sola
1		114.114	_	

Rank	Installed by Utility Territory	MWdc
1	PGE	1,763
2	National Grid	1581
3	Xcel Energy	1,132
4	SCE	934
5	Eversource	831
6	PSEG	650
7	JCP&L	480
8	SDGE	322
9	APS	291
10	New York State Electric and Gas	253

Massachusetts: DG Process Overview per MDPU 1468

Study Costs

- MA avg study cost 2021 = \$20,500
 - Does not include ASO or Group Study fees
- Tariff permitted 55BD

February 24, 2022 3

Energy Storage Systems

Different from other DER:

- Increased capability for dispatch/control as compared to other DG
- Ability to range from a load asset to a distribution asset
- Presents unique challenges to operational and planning activities

Challenges:

- Capacity reservation: National Grid must be prepared for worstcase system conditions, preparing for ESS to act as full-load or full-generation at any time
 - Day-to-Day Operation: Can limit Control Center flexibility in system switching for restoration efforts or planned outages
 - Planning: Similar limitations for area reconfiguration opportunities, leading more quickly to infrastructure investment

Massachusetts Online Hosting Capacity Map

~300MW in Group Studies

~190MW of which are stand alone ESS

Capacity Reservation: "Filling Up" Feeders

ESS as Generation (Discharge Scenario)

ESS as Load (Charge Scenario)

Effects:

- Long term → Planning Available feeder and substation capacity reduced, more quickly leading to need for infrastructure investment
 - Affects DG customers directly through cost obligation from Impact Studies
 - Affects all customers through long term planning
- Day to Day → Control Center Available capacity for switching

February 24, 2022

Capacity Reservation: Switching Example

- Both feeders rated for 10 MW
- Purple feeder: 6 MW net
 - 2 MW offset by discharging battery
 - 8 MW of load
- Green feeder: 5 MW net
 - 3 MW of charging battery
 - 2 MW of load

- Purple feeder: 6 MW net
 - 2 MW offset by discharging battery
 - 8 MW of load
- Green feeder out of service: 2 MW unserved
 - 3 MW battery is offline

- Purple feeder picks up Green feeder:
 - 2 (Green Fdr) + 8 (Purple Fdr) = 10 MW load
 - 2 MW of battery that could:
 - Continue discharging (feeder load is 8 MW)
 - Stop doing anything (feeder load is 10 MW)
 - Start charging (feeder load is 12 MW)
- Near term → Control Center Day to day switching and operational flexibility can be limited
- Long term → Planning Available feeder and substation capacity reduced, more quickly leading to need for infrastructure investment
 - Affects DG customers directly through cost obligation from Impact Studies
 - Affects all customers through long term planning

Schedule

24-Hour Schedule

- Predictability and certainty in load/generation behavior
- Generally aligning to have ESS act as "reducer"
- Slows "feeder filling" challenges degree of relief on planning and dayto-day system management
- More efficient use of available system capacity overall enabling more projects (qty and MW) online
- Curtailment analysis to identify the threshold level at which thermal impacts require system modifications

National Grid Charge/Discharge Windows

	Charge	Discharge
	Window	Window
Spring	11PM-5PM	5PM-11PM
Summer	11PM-3PM	3PM-11PM
Fall	11PM-4PM	4PM-11PM
Winter	11PM-3PM	3PM-11PM

Pros

- More manageable integration
- More efficient use of available capacity
- Slower to large infrastructure upgrades

Cons

- Reduced opportunity for ROI from various markets
- ISA ability to adjust schedules in the future

February 24, 2022

National Grid Charge/Discharge Windows

National Grid Charge/ Discharge Williams		
	Charge	Discharge
	Window	Window
Spring	11PM-5PM	5PM-11PM
Summer	11PM-3PM	3PM-11PM
Fall	11PM-4PM	4PM-11PM
Winter	11PM-3PM	3PM-11PM

nationalgrid

Study Considerations

National Grid Charge/Discharge Windows

Tracional on a charge, bischarge Windows			
	Charge	Discharge	
	Window	Window	
Spring	11PM-5PM	5PM-11PM	
Summer	11PM-3PM	3PM-11PM	
Fall	11PM-4PM	4PM-11PM	
Winter	11PM-3PM	3PM-11PM	

nationalgrid

Study Considerations

Final Thoughts

Pay to Upgrade

- Based on historic study results, we have seen projects unable to move forward with high system mod costs, which could be the case with unconstrained
- Studying unconstrained with high cost system mod results could reduce overall DG enablement

Contingency scenarios

- Unconstrained, due to unpredictability and need for swift action, customers can expect to be off for duration
- Similar for planned switching, possibility for affected customer to pay for study for alternatives
 - But alternatives may not be available depending on existing system conditions

Schedules Don't Eliminate Challenges

- Schedules enable efficient use of available capacity, enabling more projects per MW
- High penetrated areas will still see need for high scale infrastructure investment

February 24, 2022 10

nationalgrid